• 186 8888 8899
  • admin@baidu.com
  • 广东省番禺区经济园科技大厦

类脑计算:从神经网络到真正的人工智能丨


奔驰s 65 amg,搜门面网,资阳景点

雷锋网 AI 科技评论按,7 月 12 日-7 月 14 日,2019 第四届全球人工智能与机器人峰会于深圳正式召开。峰会由中国计算机学会主办,雷锋网、香港中文大学承办,深圳市人工智能与机器人研究院协办,得到了深圳市政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流博览盛会,旨在打造国内人工智能领域极具实力的跨界交流合作平台。

7 月 13 日,在「k8凯发官方网址类脑计算」专场论坛上,来自学术界、企业界的多位知名学者、专家围绕类脑科学这个主题,从类脑计算的底层技术、最新研究进展到实际落地进行了精彩的剖析和探讨。

美国国家工程院士,美国艺术与科学院院士,美国网格超级计算机发明者陈世卿:第三脑引领前沿脑科学

论坛伊始,陈世卿教授带来了主题为「The Third Brain Theory and Practice」的演讲。

他表示,现在全世界所有最快速的超级计算机消耗的能量都非常高,甚至达到了不可忍受的地步。基于这一现状,13 年前他成立了非正式的第三脑研究院,希望未来的计算机能够像人的大脑一样低能耗、高速度、高效率,且它不能是以前那样固定的架构,必须是有弹性的。

他进一步表示,他们的目的是借用系统架构,从超级计算机里面综合神经科学、人工智能和超级计算这三种科学来引领前沿的脑科学。这一研究的目的有三个,第一点是提升人群的身心健康,第二点是提升人群的智慧品质,第三点提升人群的道德水平。

第三脑有四个方向:1. 研究脑,深入了解脑的基础生物机制;2. 保护脑:防止脑损伤和找到早期精准检测的方法;3. 开发脑:发展脑机融合的高效率学习方法;4. 延伸脑:把脑机融合的技术延伸到云端,从小到老,终生陪伴。

这四个方向他们都有涉猎。他们的目标是建立一个健康、愉快、智慧、和谐的社会。

北京大学信息技术学院教授,麦戈文脑科学研究员吴思:发展类脑计算模型进行时空动态模式识别

吴思教授的演讲主题是「类脑的感知计算模型」。

他表示,计算神经科学在脑科学和人工智能之间起到了桥梁的作用。

目前,深度学习在静态物体的识别上已经超过了人类,但还有很多的工作是深度学习做不好的,其中之一就是时空动态的模式识别。这个问题对人脑来说是非常简单的,但深度学习并不擅长这个。

为什么时空动态模式识别特别重要?因为类脑的目的是模仿大脑处理信息的方式,而大脑处理信息的方式和深度学习有很多的不同,人脑处理的都是动态的时空信息。

所以,真正的类脑计算不应该处理静止图像,而应该处理时空连续的信号。虽然深度学习已经有很多成功的应用,但如果往下走,例如在进行视频分析、动态视觉信息处理的时候,自然就会遇到和人脑一样的任务,需要做一些动态时空模式的识别。

要做动态时空模式的识别,首先,信号源不应该是静止的图像,而应该像人类一样输入连续的信号。目前在这一问题上已经有很多很好的工作。如果我们要做人脑,就应该直接从源头上产生连续的信号,后面的模型也要用处理连续信号的方式来处理。如果在源头上已经产生了这种脉冲信号,后面配备的模型和理论也要全部提升,不能再用现在的机器视觉的算法。

视觉系统有三个基本的功能:物体的勘测、跟踪和物体的识别。这三个功能组合起来就会产生更复杂的视觉功能。所以根据三个基本的功能,结合人脑的工作原理,可以尝试发展类脑计算的模型。

本文地址:http://www.feizekeji.com/shouji/141165.html 转载请注明出处!